Amphoteric Nature of Water

The pH scale in water depends upon this

Autoionization

A self-ionization process which depends upon the amphoteric nature of the solvent. It is exactly this process which defines what acidity and basicity in a particular solvent is (via the autoionization reaction of the solvent).

Strong Acids and Bases to Know

seven strong acids to know		
hydrochloric acid	HCI	
hydrobromic acid	HBr	
hydroiodic acid	HI	
perchloric acid	HCIO ₄	
chloric acid	HCIO ₃	
sulfuric acid	H_2SO_4	
nitric acid	HNO ₃	

soluble strong bases to know		
lithium hydroxide	LiOH	
sodium hydroxide	NaOH	
potassium hydroxide	KOH	
rubidium hydroxide	RbOH	
cesium hydroxide	CsOH	
barium hydroxide	Ba(OH) ₂	

strong bases - all Group I and Group II hydroxides except Be

Acid Strength

HA – generic way of writing a monoprotic acid (one acidic hydrogen)

acid strength – determined by extent of reaction of acid with water to form $H_3O^+(aq)$, or the extent of its ionization or dissociation, as shown by the magnitude of its equilibrium constant, K_a – then for any hydrogen-containing compound, HA

$$HA(aq) + H_2O(I) <=> H_3O^+(aq) + A^-(aq)$$

EQUATION FOR ACIDITY FOR ANY HA

EQUILIBRIUM	Various Ways to Describe Acid Strength		
CONSTANT	Property	Strong Acid	Weak Acid
$[H_2O^+][A^-]$	<i>K</i> _a value	$K_{\rm a}$ is large	$K_{\rm a}$ is small
$K_{\rm a} = \frac{[\rm H30^{\circ}][\rm H4^{\circ}]}{[\rm H4]}$	Position of the dissociation equilibrium	Far to the right	Far to the left
	Equilibrium concentration of H ⁺ com- pared with original concentration of HA	$[\mathrm{H^+}] \approx [\mathrm{HA}]_0$	$[\mathrm{H^+}] \ll [\mathrm{HA}]_0$
	Strength of conjugate base compared with that of water	A [–] much weaker base than H ₂ O	A^- much stronger base than H_2O

Base Strength

B: – generic way of writing a monobasic base (one basic site)

base strength – (aside from Group I and II hydroxides) determined by extent of reaction of base with water to form $OH^{-}(aq)$, or extent of its ionization, as shown by the magnitude of its equilibrium constant, $K_{\rm b}$ – then for any base B:

$$B:(aq)$$
 + $H_2O(I)$ <=> $OH^-(aq)$ + $BH^+(aq)$

EQUATION FOR BASICITY FOR ANY B:

EQUILIBRIUM CONSTANT

 $[OH^{-}][BH^{+}]$

[B:]

Various Ways to Describe Base Strength

Property	Strong Base	Weak Base
$K_{\rm b}$ value	either	$K_{\rm b}$ is small
	1) dissociates to give	
Position of the dissociation equilibrium	OH ⁻ ions to the solution	Far to the left
Equilibrium concentration of OH ⁻ com-	or 2) reacts with water	$[OH^{-}] \ll [B^{-}]_{0}$
pared with original concentration of B:	in either case:	
Strength of conjugate acid compared	$[OH^{-}] = [B:]_{0}$	BH ⁺ much stronger
with that of water		acid than water

*K*_b =

Conjugate Acid/Base Pairs

The conjugate base of a weak acid is a weak base. The weaker the acid, the stronger the base. However, if one member of a conjugate pair is weak, so is its conjugate.

The relation between K_a for an acid and K_b for its conjugate base in aqueous solution is $K_w = K_a \times K_b$.

When a strong acid (or base) is added to a weak base (or acid), they react nearly completely.

Water and the	PH Scale
---------------	----------

water autoionization: $2 H_2O(l) \le H_3O^+(aq) + OH^-(aq)$

 $K_{\rm w} = [H_3O^+][OH^-] = 1.01 \times 10^{-14} (at 25^{\circ}C)$

 $K_{\rm w}$ is an equilibrium constant which depends upon temperature.

pH is temperature dependent

condition	concentrations	pH (only at 25°C)
acidic	[H ₃ O ⁺] > [OH [−]]	pH < 7
neutral	[H ₃ O ⁺] = [OH [−]]	pH = 7
basic	[H ₃ O ⁺] < [OH [−]]	pH > 7

Temperature Dependence of K_{w}	
Temperature (°C)	K _w
0	0.114×10^{-14}
10	$0.292 imes 10^{-14}$
20	0.681×10^{-14}
25	1.01×10^{-14}
30	1.47×10^{-14}
40	2.92×10^{-14}
50	5.47×10^{-14}
60	9.61×10^{-14}

EX 6. $K_{w} = 2.4 \times 10^{-14}$ at body temperature (98.6°C = 37.0°C). a) What is the hydrogen ion concentration? $K_{w} = [H_{3}O^{+}][OH^{-}] = x^{2} \implies x = [H_{3}O^{+}] = \sqrt{K_{w}} = \sqrt{(2.4 \times 10^{-14})} = 1.5 \times 10^{-7} \text{ M}$ significant figures for logarithms: b) What is the pH? $pH = -\log_{10}[H_{3}O^{+}] = -\log_{10}(1.549 \times 10^{-7}) = 6.80989 \implies 6.81$

Water and the pH Scale

other "p" functions:

pH = $-\log_{10}[H_3O^+]$ p $K_a = -\log_{10}K_a$ pOH = $-\log_{10}[OH^-]$ p $K_b = -\log_{10}K_b$ p $K_w = -\log_{10}K_w$ p $K_{sp} = -\log_{10}K_{sp}$

EX 7. Answer each of the following

a) pH = 9.3, $[H_3O^+] = ?$

 $pH = -log_{10}[H_3O^+] \implies [H_3O^+] = 10^{-pH} = 10^{-9.3} = 5.01 \times 10^{-10} \implies 5 \times 10^{-10}$

b) 0.40 moles of Ba(OH)₂ is dissolved in a liter of water, pOH? Ba(OH)₂(s) \rightarrow Ba²⁺(aq) + 2 OH⁻(aq) => 0.80 M [OH⁻]

Water and the pH Scale

other "p" functions:

pH = $-\log_{10}[H_3O^+]$ pK_a = $-\log_{10}K_a$ pOH = $-\log_{10}[OH^-]$ pK_b = $-\log_{10}K_b$ pK_w = $-\log_{10}K_w$ pK_{sp} = $-\log_{10}K_{sp}$

EX 7. Answer each of the following a) pH = 9.3, $[H_3O^+] = ?$ $pH = -\log_{10} [H_3O^+] \implies [H_3O^+] = 10^{-pH} = 10^{-9.3} = 5.01 \times 10^{-10} \implies 5 \times 10^{-10}$ b) 0.40 moles of $Ba(OH)_2$ is dissolved in a liter of water, pOH? $Ba(OH)_2(s) \rightarrow Ba^{2+}(aq) + 2 OH^{-}(aq) \Rightarrow 0.80 M [OH^{-}]$ $pH = -\log_{10} [OH^{-}] = -\log_{10} [0.08] = 0.0969 \implies 0.097$ c) pH = 9.3, $[OH^{-}] = ?$ $K_{w} = [H_{3}O^{+}][OH^{-}] = 1.01 \times 10^{-14} \implies pK_{w} = pH + pOH = -\log_{10}(1.01 \times 10^{-14}) = 13.9956$ $pOH = 13.9956 - 9.3 = 4.6956 => [OH^{-}] = 10^{-4.6956} = 2.015 \times 10^{-5} => 2.0 \times 10^{-5}$

```
What is the pH of 1.0 \times 10^{-8} M HCI?
```

```
Answer: It cannot be pH 8.00. It should be an acidic solution with a pH lower than 7.00!
```

There are two reactions that are important. (1) $HCI(aq) \rightarrow H^+ + CI^-$ (2) $H_2O \Rightarrow H^+ + OH^-$

Use the systematic treatment of equilibrium

What is the pH of a 1.0×10^{-8} M solution of HCl?

GOAL - account for the concentration of all species present in a solution once equilibrium has been reached. The equations to do this derive from

- 1. charge balance solution must be electrically neutral
- 2. material balance conservation of matter; what happens to initial concentrations
- 3. equilibrium expressions and their equilibrium constants

GOAL - account for the concentration of all species present in a solution once equilibrium has been reached. The equations to do this derive from

1. charge balance - solution must be electrically neutral

EX 1. Write the charge balance for a solution containing only the following: H^+ , OH^- , Na^+ , Ba^{2+} , PO_4^{3-} , Ag^+ , SO_4^{2-}

 $[H^+] + [Na^+] + 2[Ba^{2+}] + [Ag^+] = [OH^-] + 3[PO_4^{3-}] + 2[SO_4^{2-}]$

Systematic Treatment of Equilibrium – Charge Balance

salt

EX 2. Write the charge balance for a solution containing $(NH_4)_3PO_4$. Be sure to consider all possible equilibrium reactions.

 NH_4^+ is an acid but its equilibrium reaction produces its neutral conjugate base, NH_3 ; PO_4^{3-} is a base whose equilibrium reactions produce

 $PO_4^{3-} + H_2O \iff OH^- + HPO_4^{2-}$ $HPO_4^{2-} + H_2O \iff OH^- + H_2PO_4^ H_2PO_4^- + H_2O \iff OH^- + H_3PO_4$

in aqueous solution autoionization of water must always be considered: $H_2O + H_2O <=> H_3O^+ + OH^-$

 $[NH_4^+] + [H^+] = [OH^-] + [H_2PO_4^-] + 2 [HPO_4^{2-}] + 3 [PO_4^{3-}]$

GOAL - account for the concentration of all species present in a solution once equilibrium has been reached. The equations to do this derive from

- 1. charge balance solution must be electrically neutral
- 2. material balance conservation of matter; what happens to initial concentrations
- 3. equilibrium expressions

Molarity and Formality

These two types of concentration are identical for a species which does not dissociate into ions in solution or does not react with water to produce ions

Molarity is the concentration of the species that is actually present in solution such as 1.0 M Cl⁻.

Consider a species which forms ions in solution such as acetic acid, CH_3COOH . You might try to place exactly 1.0 mole in a liter of water to form a 1.0 M solution but the solution will have partially dissociated into CH_3COO^- . Such a solution is 1.0 F = [CH_3COOH] + [CH_3COO^-]. So formality represents the concentration of the different "pieces" that acetic acid forms in solution or the concentration originally placed in water (before dissociation).

Harris uses formality

Systematic Treatment of Equilibrium – Mass Balance

EX 3. What is the mass balance equation for a solution prepared by adding 0.100 moles of ammonia to 1.000 L?

NH₃ is a weak base and reacts with water:

```
NH_{3}(aq) + H_{2}O(l) \iff OH^{-}(aq) + NH_{4}^{+}(aq)
```

so the mass balance is

 $0.100 F = [NH_3]_0 = [NH_3] + [NH_4^+]$

Systematic Treatment of Equilibrium

equations needed for solution for unknown

General approach includes

1. write down the pertinent chemical reactions and their equilibrium constant expressions

2. write down all species present in solution according to #1

3. set up the charge balance equation (the solution must be electrically neutral so the number of positive charges = the number of negative charges)

4. apply the material balance equation (conservation of matter) – may be more than one

5. are there enough equations to solve for the unknowns?

EX 4. What is the pH of a 1.0×10^{-8} M solution of HBr?

- 1. reactions, $K(HBr \rightarrow H^+ + Br^-)$ $H_2O \iff H^+ + OH^- \quad K_w = [H^+][OH^-]$
- 3. charge balance: $[H^+] = [OH^-] + [Br^-]$ 4. mass balance: $[Br^-] = 1.0 \times 10^{-8}$ substitute for [OH⁻]
- 2. species: H^+ , OH^- , Br^-

substitute for [Br-]

 $K_{w} = [H^{+}][OH^{-}] = [H^{+}] \{ [H^{+}] - [Br^{-}] \} = [H^{+}]^{2} - [H^{+}][Br^{-}]$

EX 4. What is the pH of a 1.0×10^{-8} M solution of HBr?

- 1. reactions, $K(HBr \rightarrow H^+ + Br^-)$ $H_2O \iff H^+ + OH^- \quad K_w = [H^+][OH^-]$
- 3. charge balance: $[H^+] = [OH^-] + [Br^-]$ 4. mass balance: $[Br^-] = 1.0 \times 10^{-8}$ substitute for [OH⁻]
- 2. species: H⁺, OH⁻, Br⁻

substitute for [Br-]

$$K_{w} = [H^{+}][OH^{-}] = [H^{+}] \{ [H^{+}] - [Br^{-}] \} = [H^{+}]^{2} - [H^{+}][Br^{-}]$$

quadratic: $[H^+]^2 - [H^+] [Br^-] - K_w = 0$

EX 4. What is the pH of a 1.0×10^{-8} M solution of HBr?

- 1. reactions, $K (HBr \rightarrow H^+ + Br^-)$ H₂O <=> H⁺ + OH⁻ $K_w = [H^+][OH^-]$
- 3. charge balance: $[H^+] = [OH^-] + [Br^-]$ substitute for $[OH^-]$ 4. mass balance: $[Br^-] = 1.0 \times 10^{-8}$ substitute for $[OH^-]$

 $K_{w} = [H^{+}][OH^{-}] = [H^{+}] \{ [H^{+}] - [Br^{-}] \} = [H^{+}]^{2} - [H^{+}][Br^{-}]$

quadratic: $[H^+]^2 - [H^+] [Br^-] - K_w = 0$

2. species: H⁺, OH⁻, Br⁻

 $[H^+] = \{ -10^{-8} \pm \sqrt{[(10^{-8})^2 + 4(1.01 \times 10^{-14})]} \} / 2$

EX 4. What is the pH of a 1.0×10^{-8} M solution of HBr?

- 1. reactions, $K (HBr \rightarrow H^+ + Br^-)$ H₂O <=> H⁺ + OH⁻ $K_w = [H^+][OH^-]$
- 3. charge balance: $[H^+] = [OH^-] + [Br^-]$ substitute for $[OH^-]$ 4. mass balance: $[Br^-] = 1.0 \times 10^{-8}$ substitute for $[OH^-]$

```
K_{w} = [H^{+}] [OH^{-}] = [H^{+}] \{ [H^{+}] - [Br^{-}] \} = [H^{+}]^{2} - [H^{+}] [Br^{-}] - K_{w} = 0
[H^{+}] = \{ -10^{-8} \pm \sqrt{[(10^{-8})^{2} + 4(1.01 \times 10^{-14})]} \} / 2
= 1.05 \times 10^{-8} M
= pH = 6.978 \Rightarrow 6.98
```

2. species: H⁺, OH⁻, Br⁻